Inside Every Model of Abstract Stone Duality Lies an Arithmetic Universe
نویسنده
چکیده
The first paper published on Abstract Stone Duality showed that the overt discrete objects (those admitting ∃ and = internally) form a pretopos, i.e. a category with finite limits, stable disjoint coproducts and stable effective quotients of equivalence relations. Using an N-indexed least fixed point axiom, here we show that this full subcategory is an arithmetic universe, having a free semilattice (“collection of Kuratowski-finite subsets”) and a free monoid (“collection of lists”) on any overt discrete object. Each finite subset is represented by its pair ( , ♦) of modal operators, although a tight correspondence with these depends on a stronger Scottcontinuity axiom. Topologically, such subsets are both compact and open and also involve proper open maps. In applications of ASD this can eliminate lists in favour of a continuationpassing interpretation.
منابع مشابه
STONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملSubspaces in Abstract Stone Duality
By abstract Stone duality we mean that the topology or contravariant powerset functor, seen as a self-adjoint exponential Σ on some category, is monadic. Using Beck’s theorem, this means that certain equalisers exist and carry the subspace topology. These subspaces are encoded by idempotents that play a role similar to that of nuclei in locale theory. Paré showed that any elementary topos has t...
متن کاملComputably Based Locally Compact Spaces
ASD (Abstract Stone Duality) is a re-axiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambda-calculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family...
متن کاملThe Dedekind Reals in Abstract Stone Duality
Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherently computable calculus that does not sacrifice key properties of real analysis such as compactness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 122 شماره
صفحات -
تاریخ انتشار 2005